(www.tiwariacademv.in)

(Chapter 7)(Alternating Current)

(Class 12)

Exercises

Ouestion 7.1:

A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply.

- (a) What is the rms value of current in the circuit?
- **(b)** What is the net power consumed over a full cycle?

Answer 7.1:

Resistance of the resistor, $R = 100 \Omega$,

Supply voltage, V = 220 V, Frequency, v = 50 Hz

(a) The rms value of current in the circuit is given as

$$I = \frac{V}{R} = \frac{220}{100} = 2.20 A$$

(b) The net power consumed over a full cycle is given as: $P = VI = 220 \times 2.2 = 484 \text{ W}$

Question 7.2:

- (a) The peak voltage of an ac supply is 300 V. What is the rms voltage?
- (b) The rms value of current in an ac circuit is 10 A. What is the peak current?

Answer 7.2:

(a) Peak voltage of the ac supply, V_0 = 300 V_{rms} voltage is given as: $V = \frac{V_o}{\sqrt{2}} = \frac{300}{\sqrt{2}} = 212.1 \ V$

$$V = \frac{V_o}{\sqrt{2}} = \frac{300}{\sqrt{2}} = 212.1 \, V$$

(c) The rms value of current is given as:

Now, peak current is given as: $I_0 = \sqrt{2}I = \sqrt{2} \times 10 = 14.1 A$

Ouestion 7.3:

A 44 mH inductor is connected to 220 V, 50 Hz ac supply. Determine the rms value of the current in the circuit.

Answer 7.3:

Inductance of inductor, $L = 44 \text{ mH} = 44 \times 10^{-3} \text{ H}$

Supply voltage, V = 220 V, Frequency, v = 50 Hz, Angular frequency, $\omega = 2\pi v$

Inductive reactance, $X_L = \omega L = 2\pi v L = 2\pi \times 50 \times 44 \times 10^{-3} \Omega$

rms value of current is given as:

$$I = \frac{V}{X_L} = \frac{220}{2\pi \times 50 \times 44 \times 10^{-3}} = 15.92 A$$

Hence, the rms value of current in the circuit is 15.92

Question 7.4:

A 60 µF capacitor is connected to a 110 V, 60 Hz ac supply. Determine the rms value of the current in the circuit.

Answer 7.4:

Capacitance of capacitor, $C = 60 \mu F = 60 \times 10^{-6} F$

Supply voltage, V = 110 V

Frequency, v = 60 Hz

Angular frequency, $\omega = 2\pi v$

www.tiwariacademy.in

(www.tiwariacademv.in)

(Chapter 7) (Alternating Current)

(Class 12)

Capacitive reactance,

$$X_C = \frac{1}{\omega C} = \frac{1}{2\pi vC} = \frac{1}{2\pi \times 60 \times 60 \times 10^{-6}} \Omega$$

rms value of current is given as:

$$I = \frac{V}{X_C} = \frac{220}{2\pi \times 60 \times 60 \times 10^{-6}} = 2.49 A$$

Hence, the rms value of current is 2.49 A

Question 7.5:

In Exercises 7.3 and 7.4, what is the net power absorbed by each circuit over a complete cycle. Explain vour answer.

Answer 7.5:

In the inductive circuit,

rms value of current, I = 15.92 A

rms value of voltage, V = 220 V

Hence, the net power absorbed can be obtained by the relation,

$$P = VI \cos \Phi$$

Where, Φ = Phase difference between V and I.

For a pure inductive circuit, the phase difference between alternating voltage and current is 90° i.e., Φ = 90°.

Hence, P = 0 i.e., the net power is zero.

In the capacitive circuit, rms value of current, I = 2.49 A, rms value of voltage, V = 110 V

Hence, the net power absorbed can be obtained as:

$$P = VI Cos \Phi$$

For a pure capacitive circuit, the phase difference between alternating voltage and current is 90° i.e., $\Phi = 90^{\circ}$.

Hence, P = 0 i.e., the net power is zero.

Question 7.6:

Obtain the resonant frequency ω_r of a series LCR circuit with L = 2.0 H, C = 32 μ F and R = 10 Ω . What is the Q-value of this circuit?

Answer 7.6:

Inductance, L = 2.0 H

Capacitance, $C = 32 \mu F = 32 \times 10^{-6} F$

Resistance, $R = 10 \Omega$

Resistance, R = 10
$$\Omega$$

Resonant frequency is given by the relation,
$$\omega_r = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{2 \times 32 \times 10^{-6}}} = \frac{1}{8 \times 10^{-3}} = 125 \ rad/s.$$
Now, 0-value of the circuit is given as:

Now, Q-value of the circuit is given a

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{10} \sqrt{\frac{2}{32 \times 10^{-6}}} = \frac{1}{10 \times 4 \times 10^{-3}} = 25$$

Hence, the Q-Value of this circuit is 25.

www.tiwariacademy.in

(www.tiwariacademy.in)

(Chapter 7) (Alternating Current)

(Class 12)

Question 7.7:

A charged 30 μF capacitor is connected to a 27 mH inductor. What is the angular frequency of free oscillations of the circuit?

Answer 7.7:

Capacitance, $C = 30\mu F = 30 \times 10^{-6} F$

Inductance, $L = 27 \text{ mH} = 27 \times 10^{-3} \text{ H}$

Angular frequency is given as:

$$\omega_r = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{27 \times 10^{-3} \times 30 \times 10^{-6}}} = \frac{1}{9 \times 10^{-4}} = 1.11 \times 10^3 \ rad/s$$

Hence, the angular frequency of free oscillations of the circuit is 1.11×10^3 rad/s.

Ouestion 7.8:

Suppose the initial charge on the capacitor in Exercise 7.7 is 6 mC. What is the total energy stored in the circuit initially? What is the total energy at later time?

Answer 7.8:

Capacitance of the capacitor, $C = 30 \mu F = 30 \times 10^{-6} F$

Inductance of the inductor, $L = 27 \text{ mH} = 27 \times 10^{-3} \text{ H}$

Charge on the capacitor, $Q = 6 \text{ mC} = 6 \times 10^{-3} \text{ C}$

Total energy stored in the capacitor can be calculated as:

$$E = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} \frac{(6 \times 10^{-3})^2}{30 \times 10^{-6}} = \frac{6}{10} = 0.6 J$$

Total energy at a later time will remain the same because energy is shared between the capacitor and the inductor.

Question 7.9:

A series LCR circuit with R = $20~\Omega$, L = 1.5~H and C = $35~\mu F$ is connected to a variable frequency 200~V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle?

Answer 7.9:

At resonance, the frequency of the supply power equals the natural frequency of the given LCR circuit. Resistance, $R = 20 \ \Omega$

Inductance, L = 1.5 H

Capacitance, $C = 35 \mu F = 30 \times 10^{-6} F$

AC supply voltage to the LCR circuit, V = 200 V

Impedance of the circuit is given by the relation,

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
At resonance, $X_L = X_C$

$$\therefore Z = R = 20.0$$

Current in the circuit can be calculated as:

$$I = \frac{V}{Z} = \frac{200}{20} = 10 A$$

Hence, the average power transferred to the circuit in one complete cycle:

$$VI = 200 \times 10 = 2000 W.$$

www.tiwariacademy.in

(www.tiwariacademy.in) (Chapter 7)(Alternating Current)

(Class 12)

Question 7.10:

A radio can tune over the frequency range of a portion of MW broadcast band: (800 kHz to 1200 kHz). If its LC circuit has an effective inductance of 200 μ H, what must be the range of its variable capacitor? [Hint: For tuning, the natural frequency i.e., the frequency of free oscillations of the LC circuit should be equal to the frequency of the radio wave.]

Answer 7.10:

The range of frequency (v) of a radio is 800 kHz to 1200 kHz.

Lower tuning frequency, $v_1 = 800 \text{ kHz} = 800 \times 10^3 \text{ Hz}$

Upper tuning frequency, $v_2 = 1200 \text{ kHz} = 1200 \times 10^3 \text{ Hz}$

Effective inductance of circuit L = 200 μ H = 200 \times 10⁻⁶ H

Capacitance of variable capacitor for v_1 is given as:

$$C_1 = \frac{1}{\omega_1^2 L}$$

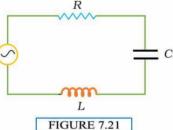
Where, ω_1 = Angular frequency for capacitor $C_1 = 2\pi v_1 = 2\pi \times 800 \times 10^3 \ rad/s$

$$\therefore C_1 = \frac{1}{(2\pi \times 800 \times 10^3)^2 \times 200 \times 10^{-6}} = 1.9809 \times 10^{-10} F = 198 pF$$

Capacitance of variable capacitor for v2 is given as:

$$C_2 = \frac{1}{\omega_2^2 L}$$

Where, ω_2 = Angular frequency for capacitor $C_2 = 2\pi v_2 = 2\pi \times 1200 \times 10^3 \ rad/s$


$$\therefore C_2 = \frac{1}{(2\pi \times 1200 \times 10^3)^2 \times 200 \times 10^{-6}} = 0.8804 \times 10^{-10} F = 88 pF$$

Hence, the range of the variable capacitor is from 88.04~pF to 198.1~pF.

Question 7.11:

Figure 7.21 shows a series LCR circuit connected to a variable frequency 230 V source. L = 5.0 H, C = $80\mu F$, R = $40~\Omega$

- (a) Determine the source frequency which drives the circuit in resonance.
- (b) Obtain the impedance of the circuit and the amplitude of current at ϵ the resonating frequency.
- (c) Determine the rms potential drops across the three elements of the circuit. Show that the potential drop across the LC combination is zero at the resonating frequency.

Answer 7.11:

Inductance of the inductor, L = 5.0 H, Capacitance of the capacitor, C = 80 μ H = 80 \times 10⁻⁶ F Resistance of the resistor, R = 40 Ω

Potential of the variable voltage source, V = 230 V

(a) Resonance angular frequency is given as:

1 1 10³

$$\omega_r = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{5 \times 80 \times 10^{-6}}} = \frac{10^3}{20} = 50 \ rad/s$$

Hence, the circuit will come in resonance for a source frequency of 50 rad/s.

www.tiwariacademy.in

(www.tiwariacademy.in)

(Chapter 7) (Alternating Current)

(Class 12)

(b) Impedance of the circuit is given by the relation:

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

At resonance,

$$X_L = X_C \implies Z = R = 40 \Omega$$

Amplitude of the current at the resonating frequency is given as: $I_o = \frac{V_o}{Z}$

Where, V_o = Peak voltage = $\sqrt{2} V$

$$\therefore I_o = \frac{\sqrt{2} V}{Z} = \frac{\sqrt{2} \times 230}{40} = 8.13 A$$

Hence, at resonance, the impedance of the circuit is 40 Ω and the amplitude of the current is 8.13 A.

(c) rms potential drop across the inductor,

$$(V_L)_{rms} = I \times \omega_r L$$

Where,

$$I_{\text{rms}} = \frac{I_o}{\sqrt{2}} = \frac{\sqrt{2} V}{\sqrt{2} Z} = \frac{230}{40} = \frac{23}{4} A$$

$$\therefore (V_L)_{\text{rms}} = \frac{23}{4} \times 50 \times 5 = 1437.5 V$$

Potential drop across the capacitor:

$$\therefore (V_C)_{\text{rms}} = I \times \frac{1}{\omega_r C} = \frac{23}{4} \times \frac{1}{50 \times 80 \times 10^{-6}} = 1437.5 \text{ V}$$

Potential drop across the resistor:

$$(V_R)_{\rm rms} = IR = \frac{23}{4} \times 40 = 230 \, V$$

Potential drop across the LC combination:

$$V_{LC} = I(X_L - X_C)$$

At resonance, $X_L = X_C \Rightarrow V_{LC} = 0$

Hence, it is proved that the potential drop across the LC combination is zero at resonating frequency.