Mathematics

(www.tiwariacademy.in)

(Chapter 4) (Quadratic Equations)

(Class 10)

Exercise 4.1

Question 1:

Check whether the following are quadratic equations:

(i).
$$(x+1)^2 = 2(x-3)$$

(iii).
$$(x-2)(x+1) = (x-1)(x+3)$$

(v).
$$(2x-1)(x-3) = (x+5)(x-1)$$

(vii).
$$(x+2)^3 = 2x(x^2-1)$$

(vii).
$$(x+2)^3 = 2x(x^2-1)$$

(ii).
$$x^2 - 2x = (-2)(3 - x)$$

(iv).
$$(x-3)(2x+1) = x(x+5)$$

(vi).
$$x^2 + 3x + 1 = (x - 2)^2$$

(viii).
$$x^3 - 4x^2 - x + 1 = (x - 2)^3$$

Answer 1:

(i)
$$(x+1)^2 = 2(x-3)$$

$$(x+1)^2 = 2(x-3)$$
 $\Rightarrow x^2 + 2x + 1 = 2x - 6$ $\Rightarrow x^2 + 7 = 0$

or
$$x^2 + 0x + 7 = 0$$

This is an equation of type $ax^2 + bx + c = 0$.

Hence, the given equation is a quadratic equation.

(ii)
$$x^2 - 2x = (-2)(3 - x)$$

Simplifying the given equation, we get

$$x^2 - 2x = (-2)(3 - x)$$
 $\Rightarrow x^2 - 2x = -6 + 2x$ $\Rightarrow x^2 - 4x + 6 = 0$
or $x^2 - 4x + 6 = 0$

This is an equation of type $ax^2 + bx + c = 0$.

Hence, the given equation is a quadratic equation.

(iii)
$$(x-2)(x+1) = (x-1)(x+3)$$

Simplifying the given equation, we get

$$(x-2)(x+1) = (x-1)(x+3)$$
 $\Rightarrow x^2 - 2x + x - 2 = x^2 - x + 3x - 3 \Rightarrow -3x + 1 = 0$
or $3x - 1 = 0$

This is not an equation of type $ax^2 + bx + c = 0$.

Hence, the given equation is not a quadratic equation.

(iv)
$$(x-3)(2x+1) = x(x+5)$$

Simplifying the given equation, we get

$$(x-3)(2x+1) = x(x+5)$$
 $\Rightarrow 2x^2 - 6x + x - 3 = x^2 + 5x$ $\Rightarrow x^2 - 10x - 3 = 0$ or $x^2 - 10x - 3 = 0$

This is an equation of type $ax^2 + bx + c = 0$.

Hence, the given equation is a quadratic equation.

(v)
$$(2x-1)(x-3) = (x+5)(x-1)$$

Simplifying the given equation, we get

$$(2x-1)(x-3) = (x+5)(x-1)$$
 $\Rightarrow 2x^2 - x - 6x + 3 = x^2 + 5x - x - 5$ $\Rightarrow x^2 - 11x + 8 = 0$ or $x^2 - 11x + 8 = 0$

This is an equation of type $ax^2 + bx + c = 0$.

Hence, the given equation is a quadratic equation.

(vi)
$$x^2 + 3x + 1 = (x - 2)^2$$

Simplifying the given equation, we get

$$x^{2} + 3x + 1 = (x - 2)^{2} \Rightarrow x^{2} + 3x + 1 = x^{2} - 4x + 4 \Rightarrow 7x - 3 = 0$$

or $7x - 3 = 0$

This is not an equation of type $ax^2 + bx + c = 0$.

Hence, the given equation is not a quadratic equation.

www.tiwariacademy.in

A Free web support in Education

Mathematics

(www.tiwariacademy.in)

(Chapter 4) (Quadratic Equations)

(Class 10)

(vii)
$$(x+2)^3 = 2x(x^2-1)$$

Simplifying the given equation, we get

$$(x+2)^3 = 2x(x^2-1)$$
 $\Rightarrow x^3 + 6x^2 + 12x + 8 = 2x^3 - 2x$ $\Rightarrow -x^3 + 6x^2 + 14x + 8 = 0$
or $x^3 - 6x^2 - 14x - 8 = 0$

This is not an equation of type $ax^2 + bx + c = 0$.

Hence, the given equation is not a quadratic equation.

(viii)
$$x^3 - 4x^2 - x + 1 = (x - 2)^3$$

Simplifying the given equation, we get

or
$$2x^2 - 13x + 9 = 0$$

This is an equation of type $ax^2 + bx + c = 0$.

Hence, the given equation is a quadratic equation.

Question 2:

Represent the following situations in the form of quadratic equations:

- (i) The area of a rectangular plot is 528 m2. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
- (ii) The product of two consecutive positive integers is 306. We need to find the integers.
- (iii) Rohan's mother is 26 years older than him. The product of their ages (in years) 3 years from now will be 360. We would like to find Rohan's present age.
- (iv) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.

Answer 2:

(i) Let, the breadth of plot = x m, therefore, the length of plot = 2x + 1 m

Hence, area = x(2x + 1) m²

According to questions, $x(2x + 1) = 528 \Rightarrow 2x^2 + x = 528 \Rightarrow 2x^2 + x - 528 = 0$ Hence, the length and breadth of plot satisfies the equation $2x^2 + x - 528 = 0$.

(ii) Let the first integer = x, therefore, the second integer = x + 1

Hence, the product = x(x + 1)

According to questions, $x(x+1) = 306 \Rightarrow x^2 + x = 306 \Rightarrow x^2 + x - 306 = 0$

Hence, the two consecutive integers satisfies the quadratic equation $x^2 + x - 306 = 0$.

(iii) Let, Rohan's age = x years, therefore, mother's age = x + 26 years

After three years, Rohan's age = x + 3 years and mother's age = x + 29 years

Hence, the product of ages = (x + 3)(x + 29) years

According to questions,

$$(x+3)(x+29) = 360 \Rightarrow x^2 + 3x + 29x + 87 = 360 \Rightarrow x^2 + 32x - 273 = 0$$

Hence, the age of Rohan satisfies the quadratic equation $x^2 + x - 306 = 0$.

(iv) Let the speed of train = x km/h, total distance = 480 km

Therefore, time taken = $\frac{480}{x}$ hours

If the speed had been 8 km/h less, then time taken = $\frac{480}{r-8}$ hours

According to questions,

$$\frac{480}{x-8} - \frac{480}{x} = 3 \Rightarrow \frac{480x - 480(x-8)}{(x-8)x} = 3$$
$$\Rightarrow 480x - 480x + 3640 = 3(x-8)x$$

$$\Rightarrow 3640 = 3x^2 - 24x \Rightarrow 3x^2 - 24x - 3640 = 0$$

Hence, the speed of train satisfies the quadratic equation
$$3x^2 - 24x - 3640 = 0$$
.

www.tiwariacademy.in

A Free web support in Education